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A NEWTON/UPWIND METHOD AND NUMERICAL 
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INTERACTIONS 
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SUMMARY 

The objective of the paper is twofold. First we describe an upwind/central differencing method for solving 
the steady Navier-Stokes equations. The symmetric line relaxation method is used to solve the resulting 
algebraic system to achieve high computational efficiency. The grid spacings used in the calculations are 
determined from the triple-deck theory, in terms of Mach and Reynolds numbers and other flow parameters. 
Thus the accuracy of the numerical solutions is improved by comparing them with experimental, analytical 
and other computational results. Secondly we proceed to study numerically the shock wave/boundary layer 
interactions in detail, with special attention given to  the flow separation. The concept of free interaction is 
confirmed. Although the separated region varies with Mach and Reynolds numbers, we find that the 
transverse velocity component behind the incident shock, which has not been identified heretofore, is also an 
important parameter. A small change of this quantity is sufficient to eliminate the flow separation entirely. 

KEY WORDS Navier-Stokes solutions Shock wave/boundary layer interactions Newton's iteration 
Upwind differencings Symmetric line relaxation 

1. INTRODUCTION 

With the advent of CFD, an enormous possibility arises for understanding unsolved complex 
fluid dynamics problems: one of these is the interaction of a shock wave with a boundary layer. 
Since Ferri' first observed this phenomenon in wind tunnel tests and Ackeret et al.' and 
Liepmann3 made systematic investigations more than 40 years ago, there have been innumerable 
experimental, analytical and numerical studies of this subject. Consequently several comprehen- 
sive reviews of up-to-date status of the development have been Advanced analytical 
methods involving asymptotic expansion techniques, laid out by Lighthill' and later developed 
into a rational theory for Re .+ co independently by Stewartson and Williams' and Neiland," 
have been successfully applied to flows at transonic and supersonic speeds to identify essential 
physical processes. However, there has been a lack of effort in the CFD community to 
systematically exploit the pertinent findings of these analyses to verify the accuracy of the 
numerical calculations. One question often bearing in one's mind is; what are the sensible choices 
of grid sizes and their distributions for dealing with such flows? A suitable choice is undoubtedly 
necessary for predicting correct physics. Moreover, with proper choices fewer grid points may be 
sufficient. The present study attempts to utilize the proper scales derived from rigorous asymp 
totic analysis, which keeps essential physical terms, to design the grid size and the distribution. 
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The shock wave/boundary layer interaction is a natural candidate for the application since 
abundant analyses are available, and yet the problem is so complex that these analyses are only 
qualitative at best and need extension from numerical techniques to provide a more complete 
description of severely separated flows. 

First we develop an efficient and accurate numerical method for solving the steady Navier- 
Stokes equations. Even though the time-marching approach for unsteady equations is usually 
used to obtain steady solutions, we instead choose to seek solutions of the steady equations, i.e. 
taking the limit of infinite time step in the former case. Therefore a great gain in efficiency is 
realized in our approach. The non-linear set of the equations is linearized and solved iteratively 
till convergence using Newton’s method. In Reference 11 the quadratic convergence is proved for 
the steady Euler equations and confirmed numerically in numerical tests. Also, we describe the 
application of various upwind schemes and suggest a desirable combination of spatial discretiz- 
ations for achieving both convergence efficiency and accuracy. In this paper we extend the 
upwind methods to solve the Navier-Stokes equations. The method is maintained second-order 
accurate in upwind differencing the convection terms and centrally differencing the diffusion 
terms. The resulting algebraic systems is of block pentadiagonal type. Many solution strategies 
are possible (see e.g. Reference 1 1). In this paper we show the efficiency of using the symmetric line 
Gauss-Seidel relaxation method. Hence a main contribution of the present paper is to show the 
development of a finite difference scheme for solving the steady Navier-Stokes equations by using 
the Newton as well as upwind methods, and to illustrate the efficacy of such a scheme. 

In order to minimize uncertainties, we restrict ourselves to the laminar boundary layer 
interacting with a shock wave, even though there are fundamental differences between laminar 
and turbulent  interaction^.^-' Using the triple-deck theory we define grid spacings in terms of 
Reynolds and Mach numbers. Some pertinent scales, such as interaction length, size of separation 
bubble, and inclination of separation and reattaching streamlines, are investigated in detail. With 
the help of numerical calculations, it is possible to provide a description of reattachment of the 
flow. Reattachment has received much less attention’2’ l 3  than separation. Since reattachment 
sets the initial conditions for the subsequent development of the flow, it is as important to have an 
accurate description. While there exists a universal free interaction region’, l4 extending up to 
separation point, the plateau region and the entire interaction region depend on the parameters 
and the situation producing the interaction, e.g. shock impingement, ramp or step. Their 
similarities and differences in terms of flow structures are investigated. We find that the transverse 
momentum of the external flow, not identified heretofore, enters as an important parameter, a 
small change of which can completely eliminate the separation, thereby giving effective flow 
control capability. 

In the next section we describe the numerical method, the resulting discrete system and the 
solution procedure. Section 3 presents the numerical results of the problems considered, along 
with comparisons with analytical, numerical and experimental results. Finally we summarize this 
study and give a plan for future research. 

2. NUMERICAL METHOD 

The 2D, steady, thin layer Navier-Stokes equations are considered: 

aF ac aw 
ax ay ay R(U,U,,) = - + - - ~ = 0 
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E = e + $(u2 + u2) ,  

P = (Y - 1)Pe. 

Note that the viscous flux can be expressed in terms of (U, U,). The following non- 
dimensionalization is used in the above equations. Let the dimensional quantities be denoted by 
an overbar. Then 

P 
P ,  ' 

p = -  ~ 

- 1 e 
(u, u) = T (li, Is), e=:, 

urn .', 
- 
P 
PW 

p=:, 

With the reference quantities chosen in this fashion, the equation of state for a perfect gas remains 
of the same form seen in (1 b); the expression for the speed of sound also remains unchanged: 

c2 = y ( y  - 1)e = y p / p .  

Sutherland's law is used to evaluate the molecular viscosity and Stoke's hypothesis is applied 
in (1). For a perfect gas it is consistent to assume that the Prandtl number Pr is constant in the 
analysis. 

To make the non-linear system numerically solvable we apply the Newton linearization 
procedure to yield the following iteration equation: 

L(U)GU = - R(U), 
where the increment of U is 

6U = U"+' - U". 

L(U) and R(U) are called the implicit and explicit operator respectively. To derive L(U) we 
assume that the transport coefficients p and K are frozen with respect to changes in U and space, 
i.e. 6U, Ax and Ay. In this case we have 

= 0. 
aw a aw 
au ayau,,  

~ - -~ 

Thus the operator L is simplified considerably: 

L ( U ) = . ( a F 6 U ) + ~ ( ~ S U ) - ~ ( ~ 6 U ) .  ax au (4) 

To discretize the spatial derivatives we apply upwind differencing for the convective terms and 
central differencing for the viscous terms. The convective terms in the operator L are first-order 
accurate, but the terms in the operator R maintain second-order accuracy. This however does not 
impair the accuracy of solution since 6U + 0 at convergence; on the other hand, it leads to faster 
convergence in comparison with using second-order upwind differencing. 

The upwind differencing in this paper is achieved by applying the Steger-Warming flux vector 
splitting,' although other splittings are possible, e.g. van Leer's flux vector splittingI6 and Roe's 
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flux difference splitting.” Even though our study shows that the Steger-Warming splitting gives 
good results for the viscous calculations, the residual R may be preferably approximated by the 
latter two splittings according to some recent results.” A further comparison of numerical results 
of these splittings has been investigated and is reported e1~ewhere.l~ One purpose of this paper is 
to study numerically the effect of some physically relevant parameters on the flow fields. Thus the 
choice of a particular splitting and the difference in accuracy become secondary. The flux vector 
splitting writes fluxes as a sum of ‘ + ’ and ‘ - ’ components: 

F = F +  + F - ,  G = G + + G - .  (5) 

The complete split fluxes are given in References 15 and 16. Let the corresponding Jacobians 
(often called true Jacobians) be defined by 

After splitting fluxes and using first-order upwind differencing for inviscid terms and central 
differencing for viscous terms, we find the discrete representation of the LHS of (4) at the grid 
point (i, j )  as 

where a, /?, 1, 4, a and v are 4 x 4 matrices for 2D equations: 

After assembling equations and applying appropriate boundary conditions, a line-block tri- 
diagonal matrix system is obtained: 

where the main diagonal Ti contains the elements of the ith line; the upper and lower diagonals 
have contributions from the (i + 1)th and (i - 1)th lines respectively. The matrix Ti is also of block 
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tridiagonal type with off-diagonals arising from the ( j + 1)th and ( j - 1)th points: 

For the discretization of the residual R, let us denote the forward and backward difference 
operators by 

A +  (f)j = <f)j+ 1 - (f)j, A - ( f ) j  = ( f ) j - ( f ) j - I .  (9) 
Upwind representation of aF/ax is given by 

aF' aF; aFJ: 
ax ax ax + - 9  
L=- 

where 

Discretization of G is made similarly. The viscous terms having the generic form 

are centre differenced as 

Substitution of (10) and (11) in (4) and (3a) results in the matrix equation 

A class of direct inversion (or LU decomposition of the equation) and relaxation procedures is 
known. The criterion for choosing a suitable procedure seems to be judged on the basis of 
stability and efficiency. Although direct inversion has gained more popularity lately because of 
the large storage capacity available in current supercomputers, the present study uses symmetric 
Gauss-Seidel line relaxation for solving (12). The symmetric line relaxation consists of two steps 
in which the first step sweeps in the direction of increasing i and the second step simply reverses 
the order of the previous step, thus mimicking the complete LU factorization of M in (12). A 
Fourier eigenvalue analysis of the implicit operator alone for a constant coefficient inviscid 
system can be made to give a guide for choosing an efficient implicit solution procedure.*' The 
result shows that the Steger-Warming splitting combined with the symmetric line relaxation 
yields quite satisfactory smoothing rates for viscous grids with a large grid aspect ratio, where the 
smoothing rate is defined as the largest absolute eigenvalue of the high-frequency Fourier modes. 
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3. NUMERICAL RESULTS 

In this section we assess the accuracy of the numerical procedure through comparison of results. 
Two classes of problems are studied, namely the interaction of a shock wave and a laminar 
boundary layer at  supersonic speed, and hypersonic flow over a flat plate. In order to include 
important physical mechanisms of the complex interaction processes, a proper choice of grid size 
must be made. The triple-deck t h e ~ r y , ~ * ' ~  which gives proper scales for each of the regions having 
different physical terms, is a sound basis for determining grid sizes and their distribution. Let 
E = Re-118.  Then the interaction region is shown to consist of the following scales9 

streamwise scale = O(ae3) ,  
lower deck scale = O(be5), 
middle deck scale = 0(h4), r upper deck scale = O(be3), 

where 

a = x , T @ ~ A ~ Q ,  b = 

The lower deck, in which the pressure gradient and viscous flow are dominant, provides the 
displacement for the pressure-displacement relationship in the interaction process. Thus suf- 
ficient resolution of the lower deck must be allowed. The upper deck, describing an inviscid 
rotational flow, also indicates the grid size required in the inviscid region for the calculation of 
this type of problem. To allow sufficient grids in each region, we choose the following grid system 
for the present calculations: 

AX = 0.03, 
Ayi = 1.5625 x 

Ayi = 1.1868Ayi-,, 1 Byi = 3.75 x 

xo = 1.0, 

1 < i < 4, 
5 < i 6 33, 
otherwise. 

The total number of grid points is 75 x 65. The grids in the bottom and top grid regions are 
basically chosen according to the scaling provided in (13); between them a continuous variation is 
given by the use of geometric progression. 

All cases considered consist of a supersonic stream at the inflow and outflow boundaries, 
except near the wall. The computational domain is chosen such that the reflected shock wave 
from the wall does not intersect the top boundary and the flow is sufficiently well developed after 
leaving the interaction region. Hence it is appropriate to specify all variables at the inflow and the 
top boundary. Linear extrapolation from the interior points is used for the variables at the 
outflow. No-slip and adiabatic or temperature-specified conditions are applied at the wall. The 
Prandtl number is taken to be 0.72. 

Case I .  Shock wave/laminar boundary iayer interaction at supersonic speed 

In addition to the demonstration of the numerical method, the study of interactions between 
shock waves and boundary layers is a primary objective in this paper. We are interested in 
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applying a reliable numerical method to look into the details of the flow structure involved in the 
interaction process, the effects of Mach and Reynolds numbers, and possibly some other 
parameters which may have been neglected previously. During the study we also made a grid 
independence check, as will be shown. 

Figure 1 displays the calculated pressure contours as well as the pressure distribution 
corresponding to each constant vertical location in order to show the overall flow structure, in 
particular the complicated wave system arising solely from the interaction process. A leading- 
edge shock wave induced by the start of the boundary layer becomes noticeably weaker after 
intersecting with an impinging oblique shock wave. The oblique shock is sufficiently strong to 
induce a sizable separation, which in turn causes the formation of the ‘separation shock’ as the 
mainstream encounters a change of effective ‘body’. An expansion fan is created as the streamline 
changes the slope, roughly at the pressure ‘plateau’. Finally the ‘reattachment shock’ wave is 
developed corresponding to further rise of the pressure. The boundary layer displacement and 
momentum thicknesses, along with various definitions of separation streamlines, are given in 
Figure 2. The zero streamline is defined by yo(x) such that 

joy’ pudy = 0. 

This may be a better choice for defining a separation streamline since it is observed in all cases 
calculated that yo is essentially parallel to the displacement thickness in the separating region. 

Experimental measurements of laminar boundary layer/shock wave interactions are very 
scarce. In fact, the data of Hakkinen et dz’ have almost becomes standard for testing the 

leading-edge shock 

I 

separation shock 

expansion fan 

rcattachment shock 

leading-edge shock separation shock expansion fan 
- P -  

Figure 1. Pressure distributions at constant-y locations and pressure contours, indicating various waves involved 
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Figure 2. Definitions of boundary layer thicknesses and separation streamlines 

accuracy of a compressible, laminar Navier-Stokes solver. Unfortunately, this set of data 
provides very little detailed information needed for validation of a code. Figure 3 shows the 
distributions of skin friction and pressure ratio. The negative skin friction in the separated region, 
not measured at the time, is indicated by arrows pointing downward. The surface pressure as 
usual is in good agreement with the data, but the skin friction shows a wide discrepancy in the 
separated region, partly due to the lesser accuracy in the measurement of the skin friction. 
Further, as Liepmann ~bserved,~ a laminar boundary layer goes through a transition to become 
turbulent immediately in the interaction region, thus increasing mixing. This may explain the 
larger separation region in the calculation, and in particular the slow recovery of the velocity 
profiles and the lower value of Cf after reattachment. Also included are the other numerical 
calculations. Thomas and Walters22 used upwind differencing achieved by van Leer's splitting 
and third-order differencing in the y-direction in a grid of 91 x 169. Plotted in Figure 4 are the 
velocity profiles at various x-locations for both unseparated and separated cases. Away from the 
boundary layer and in the velocity deficit due to the leading-edge shock, no measurements were 
made. Very good predictions are found in the unseparated case, but only reasonable to poor 
agreement is obtained in the separated case. 

Next we study the effect of the parameters on the interactions using the same method as 
described above. Let us denote the strength of the impinging shock at angle 0 (all angles are 
positive if measured clockwise) by 

C = M L  sin2B - 1. (15) 

The pressure rise across the incident shock wave is Ap = 2yC/(y + 1). (Note that the overall 
inviscid pressure rise across both incident and reflected shocks turns out to be the same if Z is the 
same.) The pressure and skin friction distributions given in Figure 5 illustrate that a small increase 
in B by only a few degrees causes a large increase of the separated region. The-pressure plateau is 
evident in the case of stronger shocks. Also the upstream influence due to the interaction is of 
finite length and the initial portions of the curves overlap. The length and height of the separated 
region are plotted against the shock strength C in Figure 6. The circles corresponding to the cases 
in Figure 5 seem to suggest that they fall on some curve, implying that the shock strength C is 
some sort of correlation variable in addition to the Reynolds number. However, by keeping C the 
same but changing M ,  and fl simultaneously, the two data points which result obviously 
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Figure 3. Comparison of surface pressure and friction coefficients for M ,  = 2.0, Re = 2.96 x 10': (a) present calculation; 
(b) other numerical results from Reference 22 
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Figure 4. Comparison of velocity profiles for (a) unseparated (Re = 2.84 x lo5, B = 31,347") and (b) separated 
(Re = 296 x lo5, p = 32.585") flows at M ,  = 2.0 

contradict this conjecture. Rather, it would appear that the transverse component of the velocity 
behind the impinging shock is of importance, since increasing its value (by decreasing B and 
increasing M ,  with fixed X = 0.1651) actually reduces the separation. This is further confirmed in 
Figure 7. Let 

Mzv  = M ,  sin8 
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Figure 5. Effect of shock strength Z on surface pressure ratio and friction coefficient for M ,  = 2.0, Re = 296 x lo5 

be the vertical component of the Mach number ( M 2 )  behind the impinging shock, where 8 is the 
deflection angle. Then increases in M2y can eliminate separation even though the shock wave 
seems to be of sufficient strength to induce separation otherwise. Note that the range of change in 
M Z y  is rather small, while the corresponding change in the size of the separation bubble is quite 
substantial. This may not be so surprising after all. By the requirement of continuity, the effect of 
increasing downwash into a control volume containing the interaction region is to accelerate the 
horizontal flow out of the volume, thereby enhancing the x-momentum and leading to reduction 
of separation. This fact, besides being of physical interest, may have some application to flow 
control, since it is different from conventional techniques such as suction. 

In Figure 8, we find that all curves of equal C have an overlapping initial portion up to and 
including the separation point. This is consistent with the notion of free interaction, initially 



SHOCK WAVE/BOUNDARY LAYER INTERACTIONS 151 

s-Y SPL I T  t- w- 

- DX/L = O .  030 
% 
0 -  

4 - P -  
m- 

0 -  - 0 

w- 
$ 1  -- 

0 - 
- 
- 

- 
P l l l r r r l l l l l l l r  

0 , 1 1 1 1 1  . I  .2 .4 0 

S-U S P L I J  
- o OX/L =0.030 - 
- 
- 

0 

- - - - -- 8 
b - - 

- 
- 

P l l l l l l l l l l l l l l  
-0 . I  .2 . 3  

1 1 1 1 1  

0 

n 

" t -  

s-u SPL 1 1  

OX/L =O. 030 

Figure 7. Effect of M i ,  on separation length LJep for I: = 01651 

D X / L = O . O 3 0  

s - Y  S P L I T  
OX/L =0.030 

C D I " I 1 I I I I I  ~ l l l l l l l l l l  
0.4 0.9 1.2 1 . 6  2.0 0.0 0.4 0.8 1 . 2  1 .6  2.0 

X / l  X / L  
G'O 

Figure 8. Concept of free interaction 



758 M.-S. LIOU 

proposed via experimental observation by Chapman et a1.,14 later derived analytically by 
Stewartson and Williams9 and now confirmed numerically. 

The dependence of the separation size on the Reynolds number is displayed for fixed M, and fl 
in Figure 9; the bubble is seen to grow gradually as Re becomes larger. Indeed, as Re -+ 00, the 
size of the separation bubble is a function of M, and only; in Figure 9 the last three conditions 
corresponding to Re = 1.0 x lo8, 5.0 x 10' and 1.0 x lo9 give the same size of separation bubble. 

A grid independence check for the solutions is performed by separately taking 2Ax and 0.5Ay, 
i.e. the grid numbers are 38 x 65 and 75 x 96 respectively. Nearly identical solutions are obtained 
except in the case of 2Ax, where the skin friction is not well resolved near the leading edge, as seen 
in Figure 10. 

Figure 1 1  shows the convergence rate for the cases presented in Figure 5. The maximum 
residual has been reduced by five orders of magnitude in about 150 iterations for the unseparated 
case; the case with stronger separation needs more iterations to reach the same level of accuracy, 
as expected. 

Case 2. Hypersonic,pow over a,flat plate 

We further apply the numerical method and the rule for gridding to the calculation of a 
hypersonic flow at M ,  = 14.1 and Re/ i= 1.0 x lo5 over a flat plate kept at constant temperature 

Figure 9. Effect of Reynolds number on separation for M ,  = 2.0, = 32,663" 

m s - w  S P L I T  -r S-Y S P L I J  

1 1 1 1 I  N I I I I I I  
0 . e  0.4 1.2 1.6 2 .0 0 . 0  0.9 0.e 1.2 116 I 2 '  .o 

X / L  X / L  

Figure 10. Effect of grid size: Ax = 0.03 (0), 75 x 65; Ax = 0,060 (A), 38 x 65 
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Figure 1 1 .  Effect of flow separation on convergence rate 
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Figure 12. Hypersonic flow over a flat plate for M, = 14.1, R e / i =  1.0 x lo5, TWIT, = 4.115 

TWITm = 4.1 15. In this case we focus attention on the pressure gradient induced by the leading- 
edge shock wave which is generated by the leading-edge boundary layer. Let the hypersonic 
similarity parameter x be defined as 

where C is defined in Section 3 and Re, is measured from the leading edge. Based on a strong 
interaction theory, Bertram and BlackstockZ3 found a modified formula for surface pressure valid 
over a wide range of conditions: 



760 M.-S. LIOU 

For calculating this flow we choose the following grid system: 

AX = 1.09 x lo-’, XQ = 1.0, 
Ay, = 2.0 x 

Ayi = l . lAy i - l ,  
1 d i d 4, 
5 d i d 46, 1 Ayi = 1.0 x lop2, otherwise. 

An excellent agreement of pressure between calculation and theoryz3 is seen in Figure 12, hence 
showing an example of the applicability of the numerical scheme to hypersonic flows. 

4. CONCLUSIONS 

We have presented a numerical method for solving the steady, thin layer Navier-Stokes 
equations. The efficiency of the method has been demonstrated, but room for improvement still 
exists. Although good accuracy has been achieved, other flux vector or flux difference splittings 
may lead to better accuracy and require fewer grids. 

A primary interest was placed on the shock wave/laminar boundary layer interaction, where 
the flow separation was emphasized. The effect of the shock strength and the Reynolds number on 
the separation was predicted as expected. The transverse component of the Mach number behind 
the incident shock was found to be an important parameter. A small change in this quantity was 
sufficient to eliminate the flow separation, thereby providing an interesting possibility for flow 
control. 

The method also gave good prediction for hypersonic flow over a flat plate. More work on 
improving the efficiency and accuracy of the method is planned for the future. 
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